Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Evol ; 87(1): 16-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30604018

RESUMO

To gain further insight into the evolution of mitochondrial genomes (mtDNAs) in Phaeophyceae, the first recorded characterization of an Ishigeophycidae mtDNA from Ishige okamurae (Yendo), and only the second recorded characterization of a Dictyotophycidae mtDNA from Dictyopteris divaricata (Okamura) Okamura are presented in this study. The 35,485 bp I. okamurae mtDNA contained 36 protein-coding genes (PCGs), 22 tRNAs, three rRNAs, and four open reading frames (orfs), and the 32,021 bp D. divaricata mtDNA harbored 35 PCGs, 25 tRNAs, three rRNAs, and three orfs. The A + T content in D. divaricata (61.69%) was the lowest recorded in sequenced brown algal mtDNAs. The I. okamurae mtDNA displayed unique genome features including an elevated start-codon usage bias for GTG, while the organization of D. divaricata mtDNA was identical to that of Dictyota dichotoma. Phylogenetic analysis based on the amino acid sequence dataset of 35 PCGs indicated that I. okamurae (Ishigeophycidae) diverged early from the Fucophycidae-Dictyotophycidae complex, which was confirmed by the comparative analysis of the mitogenome structure. The novel mitogenome data made available by this study have improved our understanding of the evolution, phylogenetics, and genomics of brown algae.


Assuntos
Genoma Mitocondrial/genética , Phaeophyceae/genética , Composição de Bases/genética , Sequência de Bases/genética , Evolução Biológica , China , DNA Mitocondrial/genética , Evolução Molecular , Genômica , Fases de Leitura Aberta/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética
2.
J Exp Bot ; 68(11): 2667-2681, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28830099

RESUMO

The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drastically different timescales from picoseconds to hours. Efficient functioning of the photosynthetic apparatus and its protection is paramount for efficient downstream processes, including metabolism and growth. Modern experimental techniques can be successfully integrated with theoretical and mathematical models to promote our understanding of underlying mechanisms and principles. This review aims to provide a retrospective analysis of multidisciplinary photosynthetic acclimation research carried out by members of the Marie Curie Initial Training Project, AccliPhot, placing the results in a wider context. The review also highlights the applicability of photosynthetic organisms for industry, particularly with regards to the cultivation of microalgae. It intends to demonstrate how theoretical concepts can successfully complement experimental studies broadening our knowledge of common principles in acclimation processes in photosynthetic organisms, as well as in the field of applied microalgal biotechnology.


Assuntos
Aclimatação , Fotossíntese/fisiologia , Plantas , Clorófitas , Modelos Biológicos , Biologia de Sistemas
3.
J Bacteriol ; 199(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533216

RESUMO

The last few years have seen the advancement of high-throughput experimental techniques that have produced an extraordinary amount of data. Bioinformatics and statistical analyses have become instrumental to interpreting the information coming from, e.g., sequencing data and often motivate further targeted experiments. The broad discipline of "computational biology" extends far beyond the well-established field of bioinformatics, but it is our impression that more theoretical methods such as the use of mathematical models are not yet as well integrated into the research studying microbial interactions. The empirical complexity of microbial communities presents challenges that are difficult to address with in vivo/in vitro approaches alone, and with microbiology developing from a qualitative to a quantitative science, we see stronger opportunities arising for interdisciplinary projects integrating theoretical approaches with experiments. Indeed, the addition of in silico experiments, i.e., computational simulations, has a discovery potential that is, unfortunately, still largely underutilized and unrecognized by the scientific community. This minireview provides an overview of mathematical models of natural ecosystems and emphasizes that one critical point in the development of a theoretical description of a microbial community is the choice of problem scale. Since this choice is mostly dictated by the biological question to be addressed, in order to employ theoretical models fully and successfully it is vital to implement an interdisciplinary view at the conceptual stages of the experimental design.


Assuntos
Consórcios Microbianos/fisiologia , Interações Microbianas , Modelos Teóricos , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...